Environmental enteric dysfunction (EED) is a chronic inflammatory process that appears to contribute importantly to child growth faltering, impaired response to oral vaccines and impaired child cognitive development. The precise pathophysiology is ill-defined, but biopsy studies and evaluation of the microbiota suggest that the microbial ecology contributes to a chronic inflammatory process that reduces the intestinal mucus barrier and normal intestinal architecture thereby compromising nutrient absorption and diverting metabolic resources away from growth and development. EED is estimated to affect 80% of residents of low income countries and may have a profound impact on global health. With outstanding basic scientists, a collaborative culture and access to biological specimens from an intervention in Bangladesh (and potentially Kenya), Stanford is particularly well-placed to make breakthroughs in understanding the underlying pathophysiology as well as identifying biomarkers for this condition. Read more: http://stanford.io/1QSnJJa.

Seminar Objective: Develop a research strategy for Stanford scientists from several disciplines to address environmental enteric dysfunction (EED).

Environmental enteric dysfunction (EED) is a chronic inflammatory process that appears to contribute importantly to child growth faltering, impaired response to oral vaccines and impaired child cognitive development. The precise pathophysiology is ill-defined, but biopsy studies and evaluation of the microbiota suggest that the microbial ecology contributes to a chronic inflammatory process that reduces the intestinal mucus barrier and normal intestinal architecture thereby compromising nutrient absorption and diverting metabolic resources away from growth and development. EED is estimated to affect 80% of residents of low income countries and may have a profound impact on global health. With outstanding basic scientists, a collaborative culture and access to biological specimens from an intervention in Bangladesh (and potentially Kenya), Stanford is particularly well-placed to make breakthroughs in understanding the underlying pathophysiology as well as identifying biomarkers for this condition. Read more: http://stanford.io/1QSnJJa.

May 6, 2016 | 1:00 - 3:30 p.m. | Y2E2, Room 300

Seminar Objective: Develop a research strategy for Stanford scientists from several disciplines to address environmental enteric dysfunction (EED).

Environmental enteric dysfunction (EED) is a chronic inflammatory process that appears to contribute importantly to child growth faltering, impaired response to oral vaccines and impaired child cognitive development. The precise pathophysiology is ill-defined, but biopsy studies and evaluation of the microbiota suggest that the microbial ecology contributes to a chronic inflammatory process that reduces the intestinal mucus barrier and normal intestinal architecture thereby compromising nutrient absorption and diverting metabolic resources away from growth and development. EED is estimated to affect 80% of residents of low income countries and may have a profound impact on global health. With outstanding basic scientists, a collaborative culture and access to biological specimens from an intervention in Bangladesh (and potentially Kenya), Stanford is particularly well-placed to make breakthroughs in understanding the underlying pathophysiology as well as identifying biomarkers for this condition. Read more: http://stanford.io/1QSnJJa.

1:00 PM Introduction & Framing - Steve Luby
1:20 PM Contribution of the microbiome to EED - Jess Grembi & Alfred Spormann
1:40 PM New proteomic approaches to explore the human response to EED - Josh Elias
2:00 PM Evidence of altered T-cell response in EED - Lisa Wagar & Mark Davis
2:15 PM Exploring bacterial translocation in EED - Genevieve Wojcik
2:30 PM Microbial genes that protect against experimental colitis - Dylan Dodd
2:45 PM Discussion and next steps